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Spatial patterns induced purely by dichotomous disorder

J. Buceta and Katja Lindenberg
Department of Chemistry and Biochemistry, and Institute for Nonlinear Science, University of California San Diego,

9500 Gilman Drive, La Jolla, California 92093-0340, USA
~Received 17 March 2003; published 23 July 2003!

We study conditions under which spatially extended systems with coupling in the manner of Swift and
Hohenberg exhibit spatial patterns induced purely by the presence of quenched dichotomous disorder. Comple-
menting the theoretical results based on a generalized mean-field approximation, we also present numerical
simulations of particular dynamical systems that exhibit the proposed phenomenology.
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I. INTRODUCTION

Quenched disorder and dynamical disorder play an imp
tant role in the properties of many physical systems. So
examples that illustrate this role in a variety of contexts a
support the wide interest in the subject of disorder inclu
the propagation of fronts in porous media@1#, the conduction
properties of doped semiconductor materials@2#, the shift of
the Curie temperature in ferromagnets@3#, and the so-called
Anderson localization transition@4#.

At the same time, another broad field of perennial inter
is pattern formation@5# because spatiotemporal structures
omnipresent in the physical world@6#. Our own recent con-
tributions in this field involve the discovery of novel mech
nisms for the appearance of spatiotemporal structures u
periodic or random global alternation of pattern-free dyna
ics @7#.

Herein, we coadunate these two topics by investigat
conditions under which the presence of quenched disord
the mechanism that triggers pattern formation. Thus, our
terest lies in a particular type of purely noise-induced p
nomenon: the appearance of patterns in disordered sys
which in an ordered state exhibitno pattern formation. We
concentrate on systems with quenched dichotomous diso
and coupling term in the manner of Swift and Hohenberg@8#,
although one can easily envision generalizations of the
malism to other kinds of disorder and/or coupling terms.

Noise-induced phenomena in spatially extended syst
have been particularly active areas of investigation in
recent past@9#. Among these are phenomena involving p
tern formationinduced purely by fluctuations@10–12#. The
word ‘‘purely’’ here emphasizes the fact that the control p
rameter that determines the presence or absence of patte
the noise intensity. Moreover, if the noise term is replaced
a nonfluctuating parameter, no spatiotemporal structures
velop foranyvalue of that parameter. Our study differs fro
these previous ones in that we consider quenched spatia
order, that is, the fluctuations have no temporal depende

Instead of focusing on a specific system at the outset,
explore some general conditions under which these syst
exhibit purely disorder-induced patterns. We then illustr
our findings with a family of systems that includes the pa
digmatic models of noise-induced phase transitions@13–15#
and noise-induced spatial patterns@13,10#. We also identify a
phenomenon in our system which has previously only b
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identified in systems with colored noise@14–16# or field-
dependent kinetic coefficients@12#, namely, a reentrant be
havior with increasing coupling strength. In other words,
find that increasing the coupling strength leads to nonmo
tonic behavior such that the patterns are most prominent
a finite value of the coupling and disappear altogether w
coupling is too strong~or too weak!. As in second- and first-
order phase transitions in equilibrium systems, the reentra
phenomenon can be either continuous~second-order behav
ior! or it may present multistability and associated hystere
~first-order behavior!.

The paper is organized as follows. We introduce the f
malism in Sec. II. In Sec. III and Appendix A, we present
generalized mean-field approximation and state the requ
ments for pattern formation induced purely by disorder. T
possible behaviors that can be deduced from these req
ments are explored in Secs. IV and V. Particular example
systems that exhibit pattern formation are given in Sec.
and the order parameters used to characterize the pattern
introduced and related to one another in Appendix B. N
merical simulations that confirm the qualitative validity
the theoretical results are presented in Sec. VII. Finally,
summarize the main results in Sec. VIII.

II. THE MODEL

We consider the following stochastic dynamics for a s
lar field f r[f(r,t) in the presence of dichotomous disorde

ḟ r5 f ~f r!1g~f r!j r1Lf r . ~1!

Here, j r is a space dependentquencheddichotomous vari-
able that models spatial disorder. The probability density oj
reads

r~j!5p1d~j2D!1p2d~j1D!, ~2!

that is, at any given siter the variablej r takes on either the
value 1D or the value2D with probabilitiesp1 and p2 ,
respectively. This model corresponds to thet→` limit of a
temporal dichotomous process with switching timet. The
term L stands for the Swift-Hohenberg coupling operator

L52D~k0
21¹2!2. ~3!
©2003 The American Physical Society03-1



-
ir

m
in
e
is
m
e

ift

ct

in

n

r
th
n

-

n

c-

e

set,
in-

es

ber
m-

g
.

istic
odic
sso-
ate
ude

the
s
re
pri-

des

by

n

J. BUCETA AND K. LINDENBERG PHYSICAL REVIEW E68, 011103 ~2003!
The effect of this coupling can be deduced by applyingL to
a plane waveeik•r,

Leik•r5v~k!eik•r, ~4!

wherev(k)52D(k0
22k2)2 is the continuous dispersion re

lation ~we use bold for vectorial quantities and italic for the
magnitudes!.

In order to implement a mean-field theory for this syste
we need to distinguish from one another the neighbor
locationsr and r8, which in turn requires that we discretiz
the system. Since numerical simulations also involve d
cretization, this procedure does not interfere with the co
parisons of theoretical and numerical results. With the und
standing of the action of the translation operator,

expS dx
]

]xD f ~x!5 f ~x1dx!, ~5!

it is straightforward to deduce a discrete version of the Sw
Hohenberg coupling operatorL,

L52DFk0
21S 2

DxD 2

(
i 51

d

sinh2S Dx

2

]

]xi
D G2

, ~6!

whered stands for the spatial dimension,Dx for the lattice
spacing, and]/]xi indicates a partial derivative with respe
to component i of the position vector r
5(x1 ,x2 , . . . ,xi , . . . ,xd). The continuum delta function
d(r2r8) is replaced in the usual way by a ratio that conta
the Kronecker delta and the lattice spacing,d r,r8 /(Dx)d. As
in the continuous case, the discrete dispersion relation ca
obtained by applying operator~6! to a plane waveeik•r, to
obtain

v~k!52DFk0
22S 2

DxD 2

(
i 51

d

sin2S Dx

2
ki D G2

. ~7!

Here, ki denotes componenti of the wave vectork
5(k1 ,k2 , . . . ,ki , . . . ,kd).

Note thatv(k) is nonpositive for any value ofk in both
the continuous and discrete cases, and that in the disc
case it depends not only on the magnitude but also on
direction of k. Of particular importance in our subseque
analysis are those modes for whichv(k)50. In the con-
tinuum these are the modes withk5k0, which are the ones
that lie on a continuous hypersurface of radiusk0 around the
origin. In the discretized system the magnitudesk* of the
least stable modes are shifted fromk0 and depend on direc
tion, as can be seen by solving Eq.~7!. The longest vectors
such thatv(k* )50 lie along the Cartesian directions ink
space, e.g. (k* ,0,0, . . . ,0), andhave magnitude

maxk* 5
2

Dx
arcsinS k0Dx

2 D . ~8!

The shortest vectors lie along a reciprocal space diago
e.g. (1/Ad)(k* ,k* ,k* , . . . ,k* ), and have magnitude
01110
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mink* 5
2Ad

Dx
arcsinS k0Dx

2Ad
D . ~9!

In our analysis ind52, we takek051 and Dx51. The
difference between maxk* and mink* is smaller than 3%,
the two values beingp/351.0472 andp/3.073751.0221. It
is therefore only a mild approximation to neglect the dire
tional dependence of the solutions ofv(k* )50 and focus on
the magnitude,v(k* )50. Furthermore, in simulations on
must use afinite system ofNd sites@i.e., of volume (NDx)d],
so that the allowed modes themselves form a discrete
with each component separated from the next one by an
tervaldk52p/NDx. One way to pick the least stable mod
is to construct a ring of radiuŝk* & ~which we shall simply
call k* from here on! of thicknessdk and to consider all the
modes that lie in this ring. We can then estimate the num
of modesn(k* ) that are least stable by calculating the nu
ber of cells of volume (2p/N)d in the ring:

n~k* !5
dpd/2

G~d/211! S NDxk*

2p D d21

. ~10!

Although slight variations in the particular way of countin
are possible, for sufficiently largeN the differences are small

III. MODULATED MEAN-FIELD THEORY

To establish the existence of patterns of a character
length scale in the steady state, we seek a spatially peri
structure defined by wave vectors whose magnitude is a
ciated with the inverse of this length scale. The appropri
wave vectors to focus on are precisely those of magnit
k* , that is, those for whichv(k)50. A mean-field theory
requires that we make an ansatz about the behavior of
stationary field at sitesr8Þr which are coupled to the focu
site r by the operatorL. We require that the ansatz captu
correct limiting behaviors and also incorporate an appro
ate spatial modulation. Our choice is

f r85A~k* !(
$k* %

cos@k•~r2r8!#1B, ~11!

where the sum~or, in an infinite system, the integral! is over
wave vectors of magnitudek* . The constantB is specified
below. Our ansatz incorporates the assumption that all mo
of magnitude k* contribute with equal ~direction-
independent! weight A(k* ). In Appendix A, we show that
the action of the coupling operator on this ansatz is given

Lf r5D1@n~k* !A~k* !2f r#1B~D12Dk0
4!, ~12!

where

D15DF S 2d

~Dx!2
2k0

2D 2

1
2d

~Dx!4G . ~13!

Substitution of Eq.~12! into Eq.~1! then leads to an equatio
that depends only on a generic site indexr that can simply be
dropped:
3-2
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SPATIAL PATTERNS INDUCED PURELY BY . . . PHYSICAL REVIEW E68, 011103 ~2003!
ḟ5 f ~f!1g~f!j1D1@n~k* !A~k* !2f#1B~D12Dk0
4!.

~14!

In the steady state, we can write the explicit equatio
associated with Eq.~14! as

05F1~f!1D1@n~k* !A~k* !2f#1B~D12Dk0
4!,

05F2~f!1D1@n~k* !A~k* !2f#1B~D12Dk0
4!,

~15!

where we have introduced the shorthand notation

F6~f!5 f ~f!6g~f!D. ~16!

We denote the solutions of Eqs.~15! by f6 , respectively.
The amplitudeA(k* ) and the constantB are the mean-

field quantities that must be chosen self-consistently to c
plete the solution of the problem. To close these equati
we choose

B5p1f̃11p2f̃2 , ~17!

wheref̃6 are the steady state fields for each of the sepa
dynamics in completely ordered systems, that is, one w
p151 and one withp251 ~see below!. Furthermore, we
impose the self-consistency condition

@n~k* !A~k* !1B#5^f&5E
2`

`

dffr„f;A~k* !…df.

~18!

Since

r„f;A~k* !…5p1d~f2f1!1p2d~f2f2!, ~19!

the self-consistency condition can be rewritten as

n~k* !A~k* !5p1~f12f̃1!1p2~f22f̃2!, ~20!

where it should be stressed thatf6 are of course functions
of A(k* ). Finally, Eqs.~15! can then be rewritten as

05F6~f6!1D1p7~f72f6!2Dk0
4~p1f̃11p2f̃2!.

~21!

We are particularly interested in systems in which th
are no patternsin any ordered state, that is, where patte
are purely disorder induced~we will choose the functionsf
andg accordingly!. For each value of the dichotomous di
order parameter we can write a deterministic evolution eq
tion for the dynamics. We insist that each of these evolut
equations describe a system that intrinsically has at leastone
steady state and hence we insist that the associated forc
confining. We also require that each of these dynamics
pattern-free, so that there must be exactlyone steady state
solution for each, and this steady state solution in each c
must be a constant independent ofr. The confining condition
requires that for allD,

lim
f→2`

F6~f!2Dk0
4f5`,
01110
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F6~f!2Dk0
4f52`. ~22!

Indeed, it is reasonable to require that the confinement no
simply due to the coupling, and thus to require that

lim
f→2`

F6~f!5`, lim
f→`

F6~f!52`. ~23!

The steady state conditions follow directly from Eq.~1!:

05F6~f!2Dk0
4f. ~24!

The solutions@already introduced in the choice ofB in Eq.
~17!# are denoted byf̃1 and f̃2 , respectively. Further, to
avoid any insertion of patterns other than those induced
disorder, we also insist thatf (f) itself be associated with
only a single steady state, i.e., that the equationsf (f)
2Dk0

4f50 and f (f)50 also have only a single solution
On the other hand, if we approximate the dynamics in th
ordered systems by our mean-field ansatz, and insist
A(k* )50 since there are no patterns, the equations in
steady state, withB chosen as in Eq.~17! in each case, read

05F6~f!2D1f1f̃6~D12Dk0
4!. ~25!

Clearly, the solutions of the two equations are againf̃1 and
f̃2 , respectively, and thus, our choice ofB is consistent with
the exact unpatterned solutions in the ordered steady sta

For simplicity, in most of the remainder of this work w
setp15p251/2, although we hasten to add that this con
tion is not necessary for the appearance of patterns. To
port this statement, we show in Fig. 1 the order parame
S(k* )5n(k* )A 2(k* ) ~discussed in more detail in Sec. V
and Appendix B! vs p1 for a particular model considere
later; the details of that model are not important at this po
A nonzero value of the order parameter indicates the app
ance of patterns and a higher value is indicative of m
pronounced patterns. In this particular instance the stron
patterns occur whenp151/2, but the figure shows that othe
values of p1 also lead to pattern formation for the sam
model and parameter values. Furthermore, we also imp
the requirement thatf (f) be an odd function andg(f) an
even function off. This immediately leads to the symmetr

F1~f1!52F2~2f2! ~26!

and, associated with the pattern-free solutionA(k* )50,

f̃152f̃2 . ~27!

In particular, the average homogeneous solutionB50. This
is always one of the possible solutions of the problem. T
stability of this state, and the possible appearance of o
solutions with A(k* )Þ0, are the subjects of our furthe
analysis.

We collect, then, the system of equations to be analy
with these simplifications. Furthermore, taking advantage
3-3
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J. BUCETA AND K. LINDENBERG PHYSICAL REVIEW E68, 011103 ~2003!
the symmetries established so far, the equations take
more tractable appearance if we define new variables

x[
D1

2
f1 , y[2

D1

2
f2 , x05

D1

2
f̃152

D1

2
f̃2 .

~28!

Thus, the equations to be solved are@cf. Eq. ~15!#

F~x!2x5y,

F~y!2y5x ~29!

with

D1n~k* !A~k* !5x2y, ~30!

where we have applied the symmetryF1(x)52F2(y) and
have dropped the subscript1 since we only need to useF1 :

F~x![F1~x!5 f ~x!1g~x!D. ~31!

To this we add the requirement that follows from Eq.~23!,

lim
x→6`

F8~x!,0, ~32!

where the prime denotes a derivative with respect to the
gument. The solutionx5y5x0 is pattern-free. We seek so
lutions with xÞy to establish the appearance of patter
Note that if a pair (x,y) solves Eqs.~29!, then so does the
pair (y,x), simply leading to a reversal in the sign ofA(k* ).
Since negative values ofA(k* ) can be interpreted in term
of an overall spatial phase, the second pair adds no
physical information beyond the symmetry statement.

The stability of the pattern-free solution becomes an
portant issue in our further discussion. This can be es
lished by a linear stability analysis aroundx5y5x0. The
time evolution of small perturbations about this solution
obtained by expanding the evolution equations

F~x!2x2y5 ẋ, F~y!2y2x5 ẏ ~33!

FIG. 1. Order parameter vsp1 for a model detailed in Sec. VI
Pattern formation is associated with a nonzero value of the o
parameter.
01110
a
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at (x,y)5(x01dx,x01dy) and retaining terms up to firs
order in the perturbations:

S d ẋ

d ẏ
D 5S F8~x0!21 21

21 F8~x0!21D S dx

dyD . ~34!

The 232 evolution matrix has eigenvalues

l15F8~x0!, l25F8~x0!22. ~35!

The largest eigenvalue~the largest Lyapunov exponent! is
clearlyl1 , and it determines the stability of the pattern-fr
solution:

F8~x0!,0 solution is stable,

F8~x0!.0 solution is unstable. ~36!

IV. PATTERN FORMATION INDUCED PURELY
BY DISORDER

We seek solutions for Eqs.~29! and, in particular, solu-
tions with xÞy. For given potential functions, one coul
produce three-dimensional plots ofF(x)2x2y and F(y)
2y2x vs x and y and observe the intersections of the
surfaces. A more intuitive graphical way to organize th
search is presented in the three panels of Fig. 2. The or
represents the pattern-free solution, and this is the only p
on the liney5x that solves the equations sinceF(x) is not
an odd function. Since Eqs.~29! are invariant under the
transformationx↔y, the linex5y defines a specular plane
that is,F(y)2y is a specular image ofF(x)2x with respect
to that symmetry plane. The asymptotic behavior~32! tells us
that for sufficiently largeuxu in the upper left quadrant
F(x)2x lies above the linex52y and has a slope,21.
This is schematically indicated by the thick solid line in th
upper left quadrant of each panel in the figure. Similarly,
the lower right quadrant the thick solid line recognizes th
F(x)2x must lie below the linex52y with a slope,
21. The specular symmetry around the linex5y then leads
us to the asymptotic thick dashed lines representing the
havior of F(y)2y.

In Fig. 2~a! we illustrate a case for which the pattern-fre
solution isstable, that is,F8(x0),0. This is indicated by the
thick solid line going through the origin. Again, the specu
symmetry leads us to the thick dashed line to indicate
approriate slope forF(y)2y. Now it is clear that the thick
solid lines can be connected, and the thick dashed lines
be connected, in such a way that the two lines do not cr
anywhere else but at the origin. Thus, when the state (x0 ,x0)
is stable, there may not appear any other stationary states
the system may simply be pattern-free. This is the case
have sketched in Fig. 2~a!.

On the other hand, it is possible to connect the solid a
dashed curves, respectively, in such a way that there aretwo
additional crossings of the curves~actually four crossings,
but only two provide independent information!. These repre-
sent two additional steady state solutions, each leading
pattern formation sincexÞy. However, only one of the two

er
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SPATIAL PATTERNS INDUCED PURELY BY . . . PHYSICAL REVIEW E68, 011103 ~2003!
is stable. This is illustrated in Fig. 2~b!. This represents the
case ofcoexistingstable states, one pattern-free and the ot
patterned, separated by an unstable state. Such coex
states are characteristic offirst-order phase transitions. One
can carry this further and envision further crossings, alw

FIG. 2. Schematic of possible solutions of the mean-field eq
tions. The origin represents the pattern-free solution. Other inter
tions of the thick solid curve@which representsF(x)2x] and the
thick dashed curve@which representsF(y)2y] are solutions of Eq.
~29! that lead to patterns. Panel~a! represents a case in which th
pattern-free solution is stable and there are no other solutions,
is, there is no pattern formation. Panel~b! describes the coexistenc
of the stable pattern-free state with a patterned stable state. In p
~c! the pattern-free state is unstable and the only stable state
patterned state.
01110
r
ing

s

an evennumber of additional crossings, representing sta
patterned states that coexist with one another and with
pattern-free state, separated by unstable states.

In Fig. 2~c! we illustrate a case for which the pattern-fre
solution isunstable, that is,F8(x0),0. Again, this is indi-
cated by the thick solid line going through the origin togeth
with its dashed specular partner. Now it is clear that a c
nection of the lines necessarily leads to at least one cros
with xÞy. In other words, when the pattern-free state b
comes unstable, at least one patterned state is neces
stable. Therefore, a sufficient condition for the occurrence
patterns is that the pattern-free state becomes unstable.

In summary, we have found the following general beha
ior.

~1! When the pattern-free solution is stable, there may
may not occur one~or more! stable solution~s! that leads to
pattern formation, the patterned and unpatterned stable s
being separated from one another by unstable solutions.
appearance of such anadditionalstable solution is indicative
of a first-order phase transition, with the usual coexistence
and hysteresis characteristics.

~2! On the other hand, when the pattern-free solution
unstable, a patterned stable state necessarily appears
destabilization of the pattern-free state might simply ma
the end of the coexistence region of a first-order transit
described above, or it might mark the occurrence of
second-order transition. These alternatives are discusse
further detail below.

We note here that although we have not mentioned
explicitly, it is implicit in this entire analysis that patterne
states can only exist if the potential functions arenonlinear.
Linear forms cannot satisfy the conditions that lead to
emergence of patterns.

V. MEAN-FIELD SOLUTION—GENERAL FEATURES

Another way to exhibit the variety of possible transitio
discussed above is to focus on the explicit solution of
mean-field equations and consider the resulting values
A(k* ). We start with the first of Eqs.~29! and subtractx
from both sides,F(x)22x5y2x. Similarly, we subtracty
from both sides of the second equation, to writeF(y)22y
5x2y. Using Eq.~30! then implies that we can write

D1n~k* !A~k* !52F~x!12x[H2~x!

5F~y!22y[H1~y!. ~37!

We can invert these relations,

x5H2
21

„A~k* !…, y5H1
21

„A~k* !…. ~38!

The self-consistency condition~30! for the mean-field solu-
tion can then be written as

D1n~k* !A~k* !5@H2
21

„A~k* !…2H1
21

„A~k* !…#

[D1n~k* !G„A~k* !…. ~39!

-
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Since A(k* )50 is always a solution~albeit not always
stable!, we know thatG(0)50. Furthermore, the symmetr
of the problem implies that ifA(k* ) is a solution, then so is
2A(k* ). Therefore,G(A(k* )) is an odd function. An ex-
pansion about zero thus has only odd powers,

G„A~k* !…5aA~k* !1bA 3~k* !1O„A 5~k* !…. ~40!

Our analysis proceeds on the basis of the first term of
expansion as well as the asymptotic behavior of the func
G. Note also that again the symmetry of the problem impl
that if A(k* ) is a solution, then so is2A(k* ), but this
provides no additional physical information. The graphic
representation of this analysis is shown in the three pane
Fig. 3, each associated with the corresponding panel
Fig. 2.

Let us first deduce the asymptotic behavior ofG by con-
sidering the slope

]H2
21~A!

]A 5
1

d

dx
H2~x!

5
1

d

dx
@2F~x!12x#

5
1

@22F8~x!#
,

~41!

where we have applied the general relation

d

dz
h21~z!5

1

h8@h21~z!#
~42!

and the prime, as usual, denotes a derivative with respe
the argument. In particular, we thus find that

lim
A→6`

]H2
21~A!

]A 5 lim
x→6`

1

@22F8~x!#
,

1

2
, ~43!

where we have used Eq.~32!. The slope2]H1
21(A)/]A

leads to exactly the same asymptotic result, so that it follo
from Eq. ~39! that

lim
A→6`

]G„A~k* !…

]A~k* !
,1. ~44!

This clearly implies that asymptotically the functionG(A) in
the positive half plane must lie below the diagonal line,
we have drawn in the three panels in Fig. 3~in the negative
half plane it must lie above, again as shown!. We keep in
mind that patterned solutions are associated with inter
tions of the functionG(A) and the diagonal, away from th
origin.

Next, we look at the behavior ofG near the origin, and
consider the coefficienta in the Taylor expansion~40!. The
calculation of this coefficient involves precisely the ste
followed above, but with the functions evaluated atx0 in-
stead of asymptotically. We readily obtain

a[
]G~A~k* !

]A~k* !
U

A(k* )50

5
2

22F8~x0!
. ~45!
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Now suppose thatF8(x0),0, a condition that according to
Eq. ~36! means that the pattern-free solution is stable. T
slope ofG„A(k* )… near the origin is below the diagonal,a
,1. It is then possible that other than the crossing at
origin there is no other crossing, that is, only the sta
pattern-free solution exists. This is illustrated in Fig. 3~a!,
and corresponds to the situation in Fig. 2~a!.

Another possibility is that there is an even number
additional crossings, as illustrated in Fig. 2~b!. One of the
two additional solutions shown in the panel would be stab
the other unstable, and the stable patterned solution wo
coexist with the pattern-free solution under the circu
stances shown in the panel. Again, this corresponds to
situation in Fig. 2~b!. Below, we establish further condition
on the forces that might lead to this behavior.

Next, suppose thatF8(x0).0, the condition that accord
ing to Eq. ~36! is associated with an unstable pattern-fr
solution. The slope ofG„A(k* )… near the origin is now
above the diagonal in the positive half plane,a.1, and an-
other crossing besides the one at the origin certainly occ
thus ensuring a stable patterned solution. This is shown
Fig. 3~c! and corresponds to Fig. 2~c!.

Although neither a necessary nor a sufficient condition
is apparent that the additional crossings in Fig. 3~b! might be
accompanied by a positive curvature ofG(A) near the ori-
gin, as shown in the panel, that is, additional crossings m
occur if the coefficientb in Eq. ~40! is positive. Likewise,
Fig. 3~c! is likely to be associated with a negative curvatu
near the origin,b,0.

It is useful to take cognizance of the possible sequence
behaviors as one varies model parameters. For instanc
sequence~a!→~b!→~c! would signal a first-order phase tran
sition from an unpatterned state through a coexistence
gime of unpatterned and patterned states to a regime w
only the patterned state is stable. On the other hand, a
quence~a!→~c! would represent a second-order phase tr
sition from an unpatterned to a patterned state. Transiti
might be reentrant, so that a return~c!→~b!→~a! ~first order!
or ~c!→~a! ~second order! is possible. In the following sec
tion we explore these results in the context of particular
amples.

VI. MEAN-FIELD SOLUTION—PARTICULAR EXAMPLES
AND PHASE DIAGRAMS

Consider the particular family of force functions

f ~f!52f~11f2!m, g~f!5~11f2!m, ~46!

with m>1. We will concentrate, in particular, on the cas
m51 andm52.

It is straightfoward to check that with this family of forc
functions, for any value ofD and couplingD, Eqs.~24! have
only a single real solution, that is, each of the ordered s
tems is pattern-free in the steady state. Thus, any pat
observed in the disordered system is purely a consequen
the disorder.

We start withm51, a choice that has been made in
number of studies of purely noise-induced transitio
3-6
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SPATIAL PATTERNS INDUCED PURELY BY . . . PHYSICAL REVIEW E68, 011103 ~2003!
@13–15#. This is a particularly useful example because it c
be solved analytically in the mean field. Furthermore,
solve the coupled equations~29! fully and calculate the re-
sulting amplitudeA using Eq.~30!, check the solutions for
their stability properties, and thus construct a phase diag

FIG. 3. Schematic ofG(A) vs A. Intersections of the thick
solid curve and the thick dashed line represent solutions of
mean-field equations. Each panel represents the same situati
the corresponding panel in Fig. 2. Panel~a! depicts the case of a
stable pattern-free solution and no other. Panel~b! shows the case o
coexistence of the stable pattern-free state and a patterned s
state~separated by an unstable solution!. In panel~c! the pattern-
free state is unstable and only a patterned state is stable.
01110
n
e

m

as a function of the parametersD and D. This procedure
yields the diagram shown in Fig. 4. We will describe t
features of the diagram in terms of the analytic solutions
the problem as well as the general diagnostic measures
scribed in the previous sections.

Equations~29! are cubic and yield altogether five solu
tions. One is the pattern-free solutionx05y0 for which
A(k* )50. Of the remaining four solutions, only two ar
distinct ~the other two are their negatives! and they yield

n~k* !A6~k* !56 1
2 ~D26DA2~D122!2 3

2 D121!1/2.
~47!

Note that in our equations we continue to useD1 for
economy of notation, whereas our illustrations involveD. In
two dimensions with the parameters specified earlier, the
are related byD1513D. Several features of these solution
are noteworthy and describe the results in Fig. 4, given
follows.

~1! Both solutions are complex ifD1,2. Therefore, the
only stationary state whenD1,2 is pattern-free@Figs. 2~a!
and 3~a!#.

~2! WhenD1>2, both solutions are real in the paramet
range

D. 1
2 ~A2~D122!12A2D1!. ~48!

One of these solutions (A1) is stable, the other unstable, an
this regime marks the shaded wedge in the figure, where
stable patterned solution coexists with the pattern-free s
tion. Entry into this region marks a first-order phase tran
tion @Figs. 2~b! and 3~b!#. The two solutions merge~and the
wedge closes! at the pointD52, D152.

~3! WhenD1>2 and

e
as

ble

FIG. 4. Phase diagram for the casem51. The shaded part of the
diagram is a coexistence region and the unshaded interior den
the occurrence of a single patterned phase. See text for a det
description. The inset shows the behavior of the order param
defined in the text as a function ofD along the lineD52.
3-7
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J. BUCETA AND K. LINDENBERG PHYSICAL REVIEW E68, 011103 ~2003!
1
2 ~2A2~D122!12A2D1!,D, 1

2 ~A2~D122!12A2D1!,
~49!

only the solutionA1 is real. This solution is stable and de
limits the unshaded region within which there is only
single steady state, which is patterned. The transition
this regime is part of the first-order phase transition if t
crossing is from the shaded region, or a second-order tra
tion if from the pattern-free region@Figs. 2~c! and 3~c!#. The
boundary of this regime is thus precisely the curve defin
by the bounds given in Eq.~49!. Alternatively, we can invert
this equation and express these same bounds as

D15 2
9 ~5D22364DAD223!. ~50!

Note that the two curves meet at the pointD5A3, D1
58/3, which is the leftmost point of the contour.

~4! According to this description, the boundary of the u
shaded region is precisely the curve along whichF8(x0)
50, thus bounding the regime within which the pattern-fr
stationary state becomes unstable. This is indeed the cas
we can establish without solving explicitly forx0 as a func-
tion of D1 andD ~the result is rather cumbersome!. In terms
of our original variable, for our potential we have the expli
expressionF8(f)523f212Df11. Setting this to zero
yields f̃15(D6AD221)/3. Requiring that these values in
deed be the ones that solve Eqs.~29! with x5y5x0 or, in
our original notation,F(f̃1)5D1f̃1 , again gives exactly
Eq. ~50!.

We call for special attention to the striking reentran
behavior of pattern formation as a function of the coupli
D: sufficiently strong coupling destroys any pattern. No
that this implies that for a given value of the disorder para
eterD there is an optimal coupling for which the pattern
structure is most pronounced. A more nuanced discussio
this behavior requires quantification in terms of order para
eters. In Appendix B we introduce in Eqs.~B6! and~B7! the
total power spectrum, S(k), and theflux of convective heat,
J. They are related to one another in Eq.~B8!, and they both
contain useful information. In general, when there is no p
tern at all, S(k) is independent ofk and of O(J/N), i.e.,
S(k)/J5O(1/N) for all k. On the other hand, when thereis a
pattern of wave vector magnitudek* , thenS(k* ) is of O(J),
i.e., S(k* )/J5O(1). A larger value of S(k* ) indicates a
stronger pattern. On the other hand, a larger ratioS(k* )/J
indicates a more coherent pattern. It is possible~as we shall
see below! for a pattern to become more~or less! coherent
even as it becomes less~or more! pronounced.

In our mean-field theory, however, we do not have acc
to all this information because we do not deal with all mod
but only with those that dominate the pattern when one
present. We are therefore restricted to choose as an o
parameter the value of the power spectrum atk* :

S~k* !5n~k* !A 2~k* !. ~51!

Within our theory,S(k* ) andJ are the same. When there
no pattern they are both zero and their ratio is undefin
When there is a pattern,S(k* )/J51. Our theory can there
01110
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fore predict whether a pattern will become stronger as
rameters are modified, but not whether it will become mo
or less coherent.

The inset in Fig. 4 shows the power spectrum for them
51 model as a function of coupling atD52 obtained from
our theory. The values are just at the edge of the seco
order phase transition region and, accordingly, the order
rameter rises continuously~albeit steeply! from zero upon
entry into the patterned region. It also vanishes continuou
as we exit the patterned region, again indicating a seco
order transition from the patterned state back to a patte
free state~reentrance! with increasing coupling. The mos
pronounced pattern is associated with the maximum in t
curve, which can be found from Eq.~47! to occur atD1
52.94.

We have also carried out the same set of calculations
the potential functions~46! with m52. While some phase
boundary information can be obtained analytically, full an
lytic solution is no longer possible because the equations
now quintic. A numerical solution is straightforward an
leads to the phase diagram shown in Fig. 5. The inset sh
the order parameter forD52, where the appearance an
disappearance of patterns with increasing coupling areboth
first-order transitions. As a result, the order parameter cu
jumps discontinuously atboth ends and exhibits, at both
ends, the usual hysteresis behavior associated with first-o
transitions.

VII. NUMERICAL SIMULATIONS

In order to check the predictions of the modified mea
field theory we perform numerical simulations for the fami
of force functions given in Eq.~46! with m51 andm52.

FIG. 5. Phase diagram for the casem52. As in the casem
51, the shaded portions represent coexistence regions and the
shaded interior indicates a single patterned phase. The inset g
shows the order parameter as a function ofD for D52. Note the
double-hysteresis behavior as a function of the coupling.
3-8
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SPATIAL PATTERNS INDUCED PURELY BY . . . PHYSICAL REVIEW E68, 011103 ~2003!
We implement an Euler numerical scheme on a tw
dimensional square lattice with periodic boundary con
tions. The values of the parameters used in the simulat
areDx51, k051, L5NDx564, andDt51023. Theaspect
ratio, which measures the number of wavelengths of the
pected patterns that fit into the system, isL/(2p/k* );10.
Below, we typically present averages over ten disorder c
figurations.

Pattern formation is characterized by the total power sp
trum S(k* ) @cf. Eq. ~B6!#, where the sum runs over wav
vectors k whose magnitudek lies in the interval @k*
22p/L,k* 12p/L#. In addition to this parameter and th
flux of convective heat,J, another useful quantity for char
acterizing the system is the angular average ofx(k)

[f̃kf̃2k .
The first panel in Fig. 6 shows the order parameterS(k* )

as a function of the disorder intensity parameterD for the
family m51 and for coupling coefficientD55. In the ab-
sence of disorder there is no pattern,S(k* )'0, but a pattern
clearly develops asD increases and is therefore entirely d
to the disorder. The inset graphs showx(k) by means of a
wave vector density plot forD53.5 and forD55. Clearly, a
ring of unstable modes develops aroundk* , and the ring
becomes more prominent with increasing disorder~as mea-
sured by the value ofD). While we recognize that our modi
fied mean-field theory does not predict the transition val
quantitatively~for D55 we predict a patterned state to fir
appear whenD511.5, while the simulations already sho
pattern formation for much smaller values ofD), the quali-
tative behavior is as predicted. It should be noted that w
the intensity ofx(k) at the most unstable modes increases
indicated by the gray scale, thewidth of the ring aroundk*
also increases with increasingD. While a higher intensity
indicates a more pronounced pattern, the width is a mea
of the coherenceof the patterns, increasing width indicatin
greater decoherence. As mentioned earlier, the ratioS(k* )/J
can be used to characterize the coherence of the patt
This nonmonotonic ratio is shown in the second panel in F
6. As also noted earlier, this ratio cannot be obtained fr
our mean-field theory.

The reentrant behavior as a function of the coupling p
dicted by the modified mean-field theory is shown in the fi
panel of Fig. 7 form51 andD52.5. The inset panels depic
density plots ofx(k) for D50, D52, andD512. Again,
the agreement with the theory is only qualitative but nev
theless dramatic because reentrance with increasing cou
strength is a rare phenomenon. Notice the destabilization
ring of modes aroundk* with increasing coupling, and its
subsequent intensity fade-out asD increases further. It
should be noted that not only does the intensity ofx(k) at
the most unstable modes decrease as indicated by the
scale, but the width of the ring also shrinks aroundk* as the
coupling grows. The patterns thus become less pronoun
but more coherent with increasing coupling. A representa
of S(k* )/J, shown in the second panel of Fig. 7, reveals t
although the system presents a reentrant behavior with
coupling, the coherence actually increases monotonicall
a function ofD.
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The actual stationary spatial patterned configuration
duced by the disorder is shown in the lower panel of Fig
for m51, D52.5, andD55, i.e., the rightmost point in the
first panel of Fig. 7. The upper panel in Fig. 8 shows t
particular configuration of quenched disorder in the simu
tion that leads to the stationary field shown in the low
panel.

We have thus confirmed the disordered-induced pat
formation phenomenon but have not yet ascertained
other prediction, namely, the occurrence of hysteresis
some cases. We predict hysteresis to occur in the sha
regions of the phase diagrams in Figs. 4 and 5. Although
do not necessarily expect quantitative agreement with
particular values of parameters that lead to hysteresis,

FIG. 6. First panel:S(k* ) vs D for m51 andD55. The insets
are density plots ofx(k) for D53.5 and forD55. The mean radius
of the ring isk* in each case. Note the destabilization of thek*
modes asD grows. The gray scale used in the density plot is t
same for both insets. Second panel:S(k* )/J vs D. Note the non-
monotonic behavior, indicating maximal coherence at aroundD
52.
3-9
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J. BUCETA AND K. LINDENBERG PHYSICAL REVIEW E68, 011103 ~2003!
question is whether hysteresis is observed at all.
Hysteresis implies a memory of the initial conditions. T

detect hysteresis we carry out two simulations. In one, st
ing from an unpatterned initial conditionf r(t0)50 for all r,
we calculate the total power spectrum in the steady state
function of increasing coupling. Then we decrease the c
pling along the same phase space path, but now our in
condition for each value of the coupling is the stationa
state obtained in the simulation with the previous value ofD.
A difference in the spectrum obtained for these two differ
conditions reflects hysteresis and the attendant coexisten

FIG. 7. First panel: reentrant behavior of the total power sp
trum as a function of the coupling form51 andD52.5. The inset
panels showx(k) for D50, D52, andD512 by means of density
plots. The same gray scale is used in all cases. The mean radi
the ring isk* in each case. AlthoughS(k* ) shows nonmonotonic
behavior, the pattern coherence increases as the coupling grow
seen in the monotonic behavior of the ratioS(k* )/J in the second
panel.
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different stationary states~one patterned and one unpa
terned, as discussed earlier!. In Fig. 9 we observe precisel
this behavior for the family of functionsm52 when increas-
ing ~black circles! and decreasing~white circles! the cou-
pling for a fixed value of the intensity of the disorder,D
53. Hysteresis is observed betweenD50 andD;7. The
qualitative behavior is thus exactly as predicted by the me
field model.

The coexistence of patterned and unpatterned states is
cernible in the density plot insets ofx(k) in the figure in that
they are no longer cleanly annular but now include contrib
tions from wave vectors other than those of magnitude n
k* . The difference between the two insets~indicating differ-
ent relative contributions of patterned and unpatterned sta!
is visible, but an even clearer rendition of the difference
seen in the angular average^x(k)&u shown in the other two
inset panels. Note, for instance, that the contributions
modes neark50 are relevant when increasing the couplin
but very small when decreasingD.

VIII. SUMMARY

Using a modified mean-field theory, we have explor
general conditions under which spatially extended syste
with Swift-Hohenberg coupling exhibit pattern formatio
purely induced by the presence of quenched dichotom

-

of

, as

FIG. 8. Density plot showing a stationary pattern purely induc
by disorder form51, D52.5, andD512 ~lower panel!. The upper
panel shows the underlying configuration of quenched disorder
this particular simulation.
3-10
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SPATIAL PATTERNS INDUCED PURELY BY . . . PHYSICAL REVIEW E68, 011103 ~2003!
disorder. We have illustrated the phenomenology with a fa
ily of force functions that includes the paradigmatic mode
of noise-induced phase transitions and noise-induced sp
patterns, among them one that can fully be solved ana
cally within the mean-field model. We show that pattern fo
mation can be achieved through continuous~second-order!
and discontinuous~first-order! transitions, and that the pat
tern formation phenomenon is reentrant with the coupli
Thus, increasing the coupling eventually destroys the or
All these predictions have been checked by means of
merical simulations, and we find full qualitative~albeit not
quantitative! agreement with the theory.

Beyond the capabilities of the modified mean-field a
proach, we have explored not only the occurrence of patte
but also their coherence. The numerical simulations sh
that even while patterns become stronger~as reflected by a
larger value of the total power spectrum at the particu
wave vector magnitude characteristic of the pattern!, they
may become less coherent~as reflected by a larger contribu
tion of neighboring wave vectors!. The converse is also pos
sible: patterns that become more coherent even as
weaken.

We conclude by stressing that the methodology and f
malism developed herein can be generalized straight
wardly to other kinds of disorder and/or couplings.
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APPENDIX A: GENERALIZATION OF THE MODIFIED
MEAN FIELD THEORY

We begin by illustrating some detailed dependences a
ciated with the ansatz field~11! and the action ofL on it. For
example, for anr8 that is m lattice sites away fromr
5(x1 ,x2 , . . . ,xd) in the directionj the ansatz reads

f~x1 ,x2 , . . . ,xj1mDx, . . . ,xd!

5 (
$k* %

A~k* !cos~mDxkj !1B. ~A1!

For anr8 that is in the immediate positive diagonal locatio
away fromr, we have

f~x11Dx,x21Dx, . . . ,xj1Dx, . . . ,xd1Dx!

5 (
$k* %

A~k* !cos@Dx~k11k21•••1kd!#1B.

~A2!

Next, to apply the discrete version~6! of L we must eluci-
date the effect of the operators@( i 51

d sinh2@(Dx/2)(]/]xi)##n

on the fieldf r for n51,2. With n51, we use the relation
2sinh2(y/2)5@cosh(y)21# and note that

(
i 51

d

coshS Dx
]

]xi
Df r

5
1

2
@f~x11Dx,x2 , . . . ,xj , . . . ,xd!

1f~x1 2Dx,x2 , . . . ,xj , . . . ,xd! . . .

1f~x1 ,x2 , . . . ,xj1Dx, . . . ,xd!

1f~x1 ,x2 , . . . ,xj2Dx, . . . ,xd! . . .

1f~x1 ,x2 , . . . ,xj , . . . ,xd1Dx!

1f~x1 ,x2 , . . . ,xj , . . . ,xd2Dx!#. ~A3!

By using Eq.~A1! in this last equation we obtain

(
i 51

d

coshS Dx
]

]xi
Df r5 (

$k* %

A~k* !(
i 51

d

cos~kiDx!1B.

~A4!

As for n52, we note that 4 sinh2(y/2)sinh2(z/2)5@cosh(y)
21#@cosh(z)21# and, in turn, cosh(y)cosh(z)51

2@cosh(y1z)
1cosh(y2z)#. The latter combination leads to contribution
that involve both forward and backward translations in d
ferent spatial directions. This is easily visualized by noti
explicitly that

r
-
ed
3-11
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J. BUCETA AND K. LINDENBERG PHYSICAL REVIEW E68, 011103 ~2003!
F(
i 51

d

coshS Dx
]

]xi
D G2

5
1

2 F (
i , j 51

d

coshS DxS ]

]xi
1

]

]xj
D D

1coshS DxS ]

]xi
2

]

]xj
D D G . ~A5!

Notice that for thed cases wherei 5 j , the second term on
the right-hand side leaves the field at the original siter. The
field at the original site is not represented by the ansatz
sumption, and therefore we must subtract thed ‘‘spurious’’
terms produced by the ansatz state and addd times the field
f r . This procedure leads to

F(
i 51

d

coshS Dx
]

]xi
D G2

f r

5
d

2
f r1 (

$k* %

A~k* !F S (
i 51

d

cos~kiDx!D 2

2
d

2G2
d

2
B.

~A6!

Note that we have taken advantage of the directional ins
sitivity of k* .

Use of Eqs.~A4! and ~A6! in Eq. ~6! then leads to the
following approximation for the term containing the Swif
Hohenberg coupling operator:

Lf r5D1S (
$k* %

A~k* !2f rD 1B~D12Dk0
4!, ~A7!

whereD1 is given in Eq.~13!.
Finally, since the summand in Eq.~A7! is independent of

the direction of thek* , the sums simply give the number o
termsn(k* ) in the sum, as given in Eq.~10! ~or the appro-
priate integral form!, times the summand. Thus, we final
arrive at the mean-field approximation

Lf r5D1@n~k* !A~k* !2f r#1B~D12Dk0
4!. ~A8!

APPENDIX B: NORMALIZATION OF THE FOURIER
TRANSFORM AND ORDER PARAMETER

In this appendix we provide details on the relations b
tween different relevant parameters used in the characte
tion of pattern formation.

The Fourier transform of a fieldf r and its inverse read
respectively,

f̃k5C(
r

f re
2 ik"r, ~B1!

f r5C̃(
k

f̃ke
ik"r, ~B2!

whereC and C̃ are normalization constants. Since
01110
s-

n-

-
a-

1

Nd (
k

eik•(r2r8)5d r,r8 , ~B3!

1

Nd (
r

ei r•(k2k8)5dk,k8 , ~B4!

the functional relation betweenC andC̃ can be obtained by
substituting Eq.~B1! into Eq. ~B2!. One readily obtains

C̃5
1

CNd
. ~B5!

For simplicity we chooseC51/Nd, and thereforeC̃51.
Two parameters commonly used to characterize spa

patterns are the total power spectrum,S(k), and the flux of
convective heat,J,

S~k!5(
$k%

f̃kf̃2k , ~B6!

J5
1

Nd (
r

f r
2 , ~B7!

where the sum in Eq.~B6! runs over all modes of magnitud
k. It is easy to check that the functional relation betwe
these two quantities is simply

J5(
k

S~k!, ~B8!

where now the sum runs over the magnitude of the mod
For a pure spatial pattern of a wave vector of magnitu

k* where all spatial directions contribute in the same way
expectf r to be

f r5 (
$k* %

A~k!cos~k•r!. ~B9!

Therefore, the Fourier transform of such a field is

f̃k5
1

2
A~k* !(

$k* %

~dk,k* 1d2k,k* !. ~B10!

Consequently, the total power spectrum and the flux of t
field are, respectively,

S~k!5
1

4 (
$k%

A 2~k* !(
$k* %

~dk,k* 1d2k,k* !2

5n~k* !A 2~k* !dk,k* . ~B11!

J5n~k* !A 2~k* !. ~B12!
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